Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An algorithm for Tambara-Yamagami quantum invariants of 3-manifolds, parameterized by the first Betti number (2311.08514v2)

Published 14 Nov 2023 in cs.CG, math.GT, and math.QA

Abstract: Quantum topology provides various frameworks for defining and computing invariants of manifolds inspired by quantum theory. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we analyze the computational complexity of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest source of state sum invariants beyond finite abelian groups (whose invariants can be computed in polynomial time) their computational complexities are yet to be fully understood. We first establish that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to compute, so that one expects the same to be true of the whole family. Our main result is then the existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where the parameter is the first Betti number of the 3-manifold with Z/2Z coefficients. Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one generally expects quantum invariants to be hard to compute classically, our results suggest that the hardness of computing state sum invariants from Tambara-Yamagami categories arises from classical 3-manifold topology rather than the quantum nature of the algebraic input.

Summary

We haven't generated a summary for this paper yet.