Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Goldilocks and the bootstrap (2503.00104v1)

Published 28 Feb 2025 in hep-th and hep-lat

Abstract: We study simplified bootstrap problems for probability distributions on the infinite line and the circle. We show that the rapid convergence of the bootstrap method for problems on the infinite line is related to the fact that the smallest eigenvalue of the positive matrices in the exact solution becomes exponentially small for large matrices, while the moments grow factorially. As a result, the positivity condition is very finely tuned. For problems on the circle we show instead that the entries of the positive matrix of Fourier modes of the distribution depend linearly on the initial data of the recursion, with factorially growing coefficients. By positivity, these matrix elements are bounded in absolute value by one, so the initial data must also be fine-tuned. Additionally, we find that we can largely bypass the semi-definite program (SDP) nature of the problem on a circle by recognizing that these Fourier modes must be asymptotically exponentially small. With a simple ansatz, which we call the shoestring bootstrap, we can efficiently identify an interior point of the set of allowed matrices with much higher precision than conventional SDP bounds permit. We apply this method to solving unitary matrix model integrals by numerically constructing the orthogonal polynomials associated with the circle distribution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.