Disproving Program Equivalence with LLMs (2502.18473v1)
Abstract: To evaluate LLMs for code, research has used manually created unit test-based benchmarks. However, these tests are often inadequate, missing corner cases and other implementation-specific oddities. This work introduces ProbeGen, a whitebox method that takes two or more executable pieces of code and searches for counterexamples to their equivalence. Comparing code semantics requires a deep understanding of code. We demonstrate that LLMs with execution feedback perform well at this task. In a common code synthesis benchmark, ProbeGen disproves 18% of samples considered equivalent to the ground truth by the benchmark-provided unit tests. Additionally, using ProbeGen, we can semantically cluster LLM samples for semantic self-consistency, improving pass@1 by 10% by unifying syntactically distinct but semantically similar samples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.