Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

M4SC: An MLLM-based Multi-modal, Multi-task and Multi-user Semantic Communication System (2502.16418v1)

Published 23 Feb 2025 in cs.IT and math.IT

Abstract: Multi-modal LLMs (MLLMs) are capable of precisely extracting high-level semantic information from multi-modal data, enabling multi-task understanding and generation. This capability facilitates more efficient and intelligent data transmission in semantic communications. In this paper, we design a tailored MLLM for semantic communication and propose an MLLM-based Multi-modal, Multi-task and Multi-user Semantic Communication (M4SC) system. First, we utilize the Kolmogorov-Arnold Network (KAN) to achieve multi-modal alignment in MLLMs, thereby enhancing the accuracy of semantics representation in the semantic space across different modalities. Next, we introduce a multi-task fine-tuning approach based on task instruction following, which leverages a unified task instruction template to describe various semantic communication tasks, improving the MLLM's ability to follow instructions across multiple tasks. Additionally, by designing a semantic sharing mechanism, we transmit the public and private semantic information of multiple users separately, thus increasing the efficiency of semantic communication. Finally, we employ a joint KAN-LLM-channel coding strategy to comprehensively enhance the performance of the semantic communication system in complex communication environments. Experimental results validate the effectiveness and robustness of the proposed M4SC in multi-modal, multi-task, and multi-user scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube