Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Together We Rise: Optimizing Real-Time Multi-Robot Task Allocation using Coordinated Heterogeneous Plays (2502.16079v1)

Published 22 Feb 2025 in cs.RO, cs.AI, cs.LG, cs.MA, cs.SY, and eess.SY

Abstract: Efficient task allocation among multiple robots is crucial for optimizing productivity in modern warehouses, particularly in response to the increasing demands of online order fulfiLLMent. This paper addresses the real-time multi-robot task allocation (MRTA) problem in dynamic warehouse environments, where tasks emerge with specified start and end locations. The objective is to minimize both the total travel distance of robots and delays in task completion, while also considering practical constraints such as battery management and collision avoidance. We introduce MRTAgent, a dual-agent Reinforcement Learning (RL) framework inspired by self-play, designed to optimize task assignments and robot selection to ensure timely task execution. For safe navigation, a modified linear quadratic controller (LQR) approach is employed. To the best of our knowledge, MRTAgent is the first framework to address all critical aspects of practical MRTA problems while supporting continuous robot movements.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.