Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lean-ing on Quality: How High-Quality Data Beats Diverse Multilingual Data in AutoFormalization (2502.15795v1)

Published 18 Feb 2025 in cs.AI, cs.CL, cs.LG, and cs.PL

Abstract: Autoformalization, the process of transforming informal mathematical language into formal specifications and proofs remains a difficult task for state-of-the-art (large) LLMs. Existing works point to competing explanations for the performance gap. To this end, we introduce a novel methodology that leverages back-translation with hand-curated prompts to enhance the mathematical capabilities of LLMs, particularly addressing the challenge posed by the scarcity of labeled data. Specifically, we evaluate three primary variations of this strategy: (1) on-the-fly (online) backtranslation, (2) distilled (offline) backtranslation with few-shot amplification, and (3) line-by-line proof analysis integrated with proof state information. Each variant is designed to optimize data quality over quantity, focusing on the high fidelity of generated proofs rather than sheer data scale. Our findings provide evidence that employing our proposed approaches to generate synthetic data, which prioritizes quality over volume, improves the Autoformalization performance of LLMs as measured by standard benchmarks such as ProofNet. Crucially, our approach outperforms pretrained models using a minimal number of tokens. We also show, through strategic prompting and backtranslation, that our approaches surpass the performance of fine-tuning with extensive multilingual datasets such as MMA on ProofNet with only 1/150th of the tokens. Taken together, our methods show a promising new approach to significantly reduce the resources required to formalize proofs, thereby accelerating AI for math.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com