Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Large language models streamline automated systematic review: A preliminary study (2502.15702v1)

Published 9 Jan 2025 in cs.IR, cs.AI, and cs.CL

Abstract: LLMs have shown promise in natural language processing tasks, with the potential to automate systematic reviews. This study evaluates the performance of three state-of-the-art LLMs in conducting systematic review tasks. We assessed GPT-4, Claude-3, and Mistral 8x7B across four systematic review tasks: study design formulation, search strategy development, literature screening, and data extraction. Sourced from a previously published systematic review, we provided reference standard including standard PICO (Population, Intervention, Comparison, Outcome) design, standard eligibility criteria, and data from 20 reference literature. Three investigators evaluated the quality of study design and eligibility criteria using 5-point Liker Scale in terms of accuracy, integrity, relevance, consistency and overall performance. For other tasks, the output is defined as accurate if it is the same as the reference standard. Search strategy performance was evaluated through accuracy and retrieval efficacy. Screening accuracy was assessed for both abstracts screening and full texts screening. Data extraction accuracy was evaluated across 1,120 data points comprising 3,360 individual fields. Claude-3 demonstrated superior overall performance in PICO design. In search strategy formulation, GPT-4 and Claude-3 achieved comparable accuracy, outperforming Mistral. For abstract screening, GPT-4 achieved the highest accuracy, followed by Mistral and Claude-3. In data extraction, GPT-4 significantly outperformed other models. LLMs demonstrate potential for automating systematic review tasks, with GPT-4 showing superior performance in search strategy formulation, literature screening and data extraction. These capabilities make them promising assistive tools for researchers and warrant further development and validation in this field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube