Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

MPPI-DBaS: Safe Trajectory Optimization with Adaptive Exploration (2502.14387v1)

Published 20 Feb 2025 in eess.SY and cs.SY

Abstract: In trajectory optimization, Model Predictive Path Integral (MPPI) control is a sampling-based Model Predictive Control (MPC) framework that generates optimal inputs by efficiently simulating numerous trajectories. In practice, however, MPPI often struggles to guarantee safety assurance and balance efficient sampling in open spaces with the need for more extensive exploration under tight constraints. To address this challenge, we incorporate discrete barrier states (DBaS) into MPPI and propose a novel MPPI-DBaS algorithm that ensures system safety and enables adaptive exploration across diverse scenarios. We evaluate our method in simulation experiments where the vehicle navigates through closely placed obstacles. The results demonstrate that the proposed algorithm significantly outperforms standard MPPI, achieving a higher success rate and lower tracking errors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.