Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Personalized Education with Generative AI and Digital Twins: VR, RAG, and Zero-Shot Sentiment Analysis for Industry 4.0 Workforce Development (2502.14080v1)

Published 19 Feb 2025 in cs.CY and cs.AI

Abstract: The Fourth Industrial Revolution (4IR) technologies, such as cloud computing, machine learning, and AI, have improved productivity but introduced challenges in workforce training and reskilling. This is critical given existing workforce shortages, especially in marginalized communities like Underrepresented Minorities (URM), who often lack access to quality education. Addressing these challenges, this research presents gAI-PT4I4, a Generative AI-based Personalized Tutor for Industrial 4.0, designed to personalize 4IR experiential learning. gAI-PT4I4 employs sentiment analysis to assess student comprehension, leveraging generative AI and finite automaton to tailor learning experiences. The framework integrates low-fidelity Digital Twins for VR-based training, featuring an Interactive Tutor - a generative AI assistant providing real-time guidance via audio and text. It uses zero-shot sentiment analysis with LLMs and prompt engineering, achieving 86\% accuracy in classifying student-teacher interactions as positive or negative. Additionally, retrieval-augmented generation (RAG) enables personalized learning content grounded in domain-specific knowledge. To adapt training dynamically, finite automaton structures exercises into states of increasing difficulty, requiring 80\% task-performance accuracy for progression. Experimental evaluation with 22 volunteers showed improved accuracy exceeding 80\%, reducing training time. Finally, this paper introduces a Multi-Fidelity Digital Twin model, aligning Digital Twin complexity with Bloom's Taxonomy and Kirkpatrick's model, providing a scalable educational framework.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.