Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

The Canonical Forms of Matrix Product States in Infinite-Dimensional Hilbert Spaces (2502.12934v1)

Published 18 Feb 2025 in math-ph, math.MP, and quant-ph

Abstract: In this work, we prove that any element in the tensor product of separable infinite-dimensional Hilbert spaces can be expressed as a matrix product state (MPS) of possibly infinite bond dimension. The proof is based on the singular value decomposition of compact operators and the connection between tensor products and Hilbert-Schmidt operators via the Schmidt decomposition in infinite-dimensional separable Hilbert spaces. The construction of infinite-dimensional MPS (idMPS) is analogous to the well-known finite-dimensional construction in terms of singular value decompositions of matrices. The infinite matrices in idMPS give rise to operators acting on (possibly infinite-dimensional) auxiliary Hilbert spaces. As an example we explicitly construct an MPS representation for certain eigenstates of a chain of three coupled harmonic oscillators.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)