Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RM-PoT: Reformulating Mathematical Problems and Solving via Program of Thoughts (2502.12589v1)

Published 18 Feb 2025 in cs.AI

Abstract: Recently, substantial advancements have been made in training LLMs to carry out step-by-step reasoning for solving intricate numerical reasoning tasks. Beyond the methods used to solve these problems, the structure and formulation of the problems themselves also play a crucial role in determining the performance of LLMs. We observe that even small changes in the surface form of mathematical problems can have a profound impact on both the answer distribution and solve rate. This highlights the vulnerability of LLMs to surface-level variations, revealing its limited robustness when reasoning through complex problems. In this paper, we propose RM-PoT, a three-stage framework that integrates problem reformulation (RM), code-aided reasoning (PoT), and domain-aware few-shot learning to address these limitations. Our approach first reformulates the input problem into diverse surface forms to reduce structural bias, then retrieves five semantically aligned examples from a pre-constructed domain-specific question bank to provide contextual guidance, and finally generates executable Python code for precise computation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.