Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Antimatter Annihilation Vertex Reconstruction with Deep Learning for ALPHA-g Radial Time Projection Chamber (2502.12169v2)

Published 13 Feb 2025 in physics.ins-det, cs.LG, and hep-ex

Abstract: The ALPHA-g experiment at CERN aims to precisely measure the terrestrial gravitational acceleration of antihydrogen atoms. A radial Time Projection Chamber (rTPC), that surrounds the ALPHA-g magnetic trap, is employed to determine the annihilation location, called the vertex. The standard approach requires identifying the trajectories of the ionizing particles in the rTPC from the location of their interaction in the gas (spacepoints), and inferring the vertex positions by finding the point where those trajectories (helices) pass closest to one another. In this work, we present a novel approach to vertex reconstruction using an ensemble of models based on the PointNet deep learning architecture. The newly developed model, PointNet Ensemble for Annihilation Reconstruction (PEAR), directly learns the relation between the location of the vertices and the rTPC spacepoints, thus eliminating the need to identify and fit the particle tracks. PEAR shows strong performance in reconstructing vertical vertex positions from simulated data, that is superior to the standard approach for all metrics considered. Furthermore, the deep learning approach can reconstruct the vertical vertex position when the standard approach fails.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.