Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

VLDBench Evaluating Multimodal Disinformation with Regulatory Alignment (2502.11361v3)

Published 17 Feb 2025 in cs.CL

Abstract: Detecting disinformation that blends manipulated text and images has become increasingly challenging, as AI tools make synthetic content easy to generate and disseminate. While most existing AI safety benchmarks focus on single modality misinformation (i.e., false content shared without intent to deceive), intentional multimodal disinformation, such as propaganda or conspiracy theories that imitate credible news, remains largely unaddressed. We introduce the Vision-Language Disinformation Detection Benchmark (VLDBench), the first large-scale resource supporting both unimodal (text-only) and multimodal (text + image) disinformation detection. VLDBench comprises approximately 62,000 labeled text-image pairs across 13 categories, curated from 58 news outlets. Using a semi-automated pipeline followed by expert review, 22 domain experts invested over 500 hours to produce high-quality annotations with substantial inter-annotator agreement. Evaluations of state-of-the-art LLMs and Vision-LLMs (VLMs) on VLDBench show that incorporating visual cues improves detection accuracy by 5 to 35 percentage points over text-only models. VLDBench provides data and code for evaluation, fine-tuning, and robustness testing to support disinformation analysis. Developed in alignment with AI governance frameworks (e.g., the MIT AI Risk Repository), VLDBench offers a principled foundation for advancing trustworthy disinformation detection in multimodal media. Project: https://vectorinstitute.github.io/VLDBench/ Dataset: https://huggingface.co/datasets/vector-institute/VLDBench Code: https://github.com/VectorInstitute/VLDBench

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.