Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CMCTS: A Constrained Monte Carlo Tree Search Framework for Mathematical Reasoning in Large Language Model (2502.11169v2)

Published 16 Feb 2025 in cs.CL

Abstract: This paper introduces the Constrained Monte Carlo Tree Search (CMCTS) framework to enhance the mathematical reasoning capabilities of LLMs (LLM). By incorporating a constrained action space, Process Reward Model (PRM), and partial order rules, CMCTS effectively addresses the limitations of existing MCTS methods in terms of state space diversity and action selection rationality. Specifically, during the expansion phase, CMCTS restricts action sampling to a predefined constrained action set to increase candidate state diversity. In the simulation phase, it introduces partial order rules and PRM to optimize action selection and prevent unreasonable state transitions. Experimental results show that CMCTS performs outstandingly across multiple mathematical reasoning benchmarks. Under a zero-shot setting, a 7B-parameter model achieves an average accuracy of 83.4\%, surpassing the 72B baseline model by 4.8\%. Ablation studies demonstrate that each component of the framework is crucial for performance improvement, and their combined use fully leverages their respective strengths. Overall, the CMCTS framework provides an effective approach to enhancing LLM mathematical reasoning capabilities, supported by theoretical analysis, and offers novel insights for future reasoning tasks.

Summary

We haven't generated a summary for this paper yet.