Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks (2502.10942v1)

Published 16 Feb 2025 in cs.CL

Abstract: Self-modulating mechanisms introduce dynamic adaptation capabilities within LLMs through contextual realignment strategies that influence token embedding trajectories across extended sequences. Contextual Flux is explored as an approach to embedding modulation, integrating an auxiliary gating mechanism within the self-attention framework to dynamically adjust token representations based on evolving contextual dependencies. The empirical analysis evaluates entropy variations, latent space realignments, and coherence stability to assess the extent to which self-regulation enhances text generation consistency while preserving generative flexibility. Quantitative assessments suggest that embedding shifts contribute to more structured adaptation in long-form sequences, with measured reductions in redundant phrase repetitions and improvements in thematic retention. Variability in contextual weight computation affects modulation stability, leading to differing levels of adaptation across diverse linguistic structures. The computational demands introduced through real-time embedding reconfiguration are examined in relation to model scalability, emphasizing the need for optimization strategies in high-volume generative applications. The findings suggest that while adaptive embedding updates improve certain aspects of coherence, their impact remains contingent on model capacity and input complexity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.