Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilistic Super-Resolution for High-Fidelity Physical System Simulations with Uncertainty Quantification (2502.10280v1)

Published 14 Feb 2025 in cs.LG and stat.ML

Abstract: Super-resolution (SR) is a promising tool for generating high-fidelity simulations of physical systems from low-resolution data, enabling fast and accurate predictions in engineering applications. However, existing deep-learning based SR methods, require large labeled datasets and lack reliable uncertainty quantification (UQ), limiting their applicability in real-world scenarios. To overcome these challenges, we propose a probabilistic SR framework that leverages the Statistical Finite Element Method and energy-based generative modeling. Our method enables efficient high-resolution predictions with inherent UQ, while eliminating the need for extensive labeled datasets. The method is validated on a 2D Poisson example and compared with bicubic interpolation upscaling. Results demonstrate a computational speed-up over high-resolution numerical solvers while providing reliable uncertainty estimates.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.