Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Statistical Coherence Alignment for Large Language Model Representation Learning Through Tensor Field Convergence (2502.09815v1)

Published 13 Feb 2025 in cs.CL

Abstract: Representation learning plays a central role in structuring internal embeddings to capture the statistical properties of language, influencing the coherence and contextual consistency of generated text. Statistical Coherence Alignment is introduced as a method to enforce structured token representations through tensor field convergence, guiding embeddings to reflect statistical dependencies inherent in linguistic data. A mathematical framework is established to quantify coherence alignment, integrating a loss function that optimizes representational consistency across training iterations. Empirical evaluations demonstrate that applying coherence constraints improves perplexity, enhances classification accuracy, and refines rare word embeddings, contributing to a more stable representation space. Comparative analyses with baseline models reveal that the proposed method fosters a more interpretable internal structure, ensuring that embeddings retain contextual dependencies while mitigating representation collapse. The impact on coherence score distributions suggests that the alignment mechanism strengthens semantic integrity across diverse linguistic constructs, leading to a more balanced organization of learned embeddings. Computational assessments indicate that while the method introduces additional memory and training costs, the structured optimization process justifies the trade-offs in applications requiring heightened contextual fidelity. Experimental results validate the effectiveness of coherence alignment in optimizing token representations, providing insights into how statistical dependencies can be leveraged to improve LLM training.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.