Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning (2502.08323v1)

Published 12 Feb 2025 in cs.CL

Abstract: Context-aware compression techniques have gained increasing attention as model sizes continue to grow, introducing computational bottlenecks that hinder efficient deployment. A structured encoding approach was proposed to selectively eliminate redundant parameter groups while ensuring that representational fidelity was preserved across multiple layers. Contextual Compression Encoding (CCE) introduced a multi-stage encoding mechanism that dynamically restructured parameter distributions, allowing for significant reductions in memory footprint and computational complexity. Experimental evaluations demonstrated that models compressed through CCE retained linguistic expressivity and coherence, maintaining accuracy across a range of text generation and classification tasks. Layer-wise analysis revealed that middle-network layers exhibited higher compression ratios, aligning with the observation that self-attention and feed-forward transformations contained redundancies that could be reorganized without impairing functional capacity. Comparisons against conventional quantization and pruning methods confirmed that CCE provided a more balanced trade-off between efficiency and model retention, achieving reductions in energy consumption and inference latency without requiring extensive retraining. Computational efficiency improvements were particularly evident in deployment scenarios involving resource-constrained environments, where reductions in memory usage enabled more scalable implementations. Further analyses of internal network behavior showed that compressed models exhibited stable activation distributions and adapted dynamically to input variations, reinforcing the viability of structured compression strategies for optimizing large-scale architectures.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.