Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Learning-Optimized, Fabrication Error-Tolerant Photonic Crystal Nanobeam Cavities for Scalable On-Chip Diamond Quantum Systems (2502.03987v1)

Published 6 Feb 2025 in physics.optics, physics.app-ph, and quant-ph

Abstract: Cavity-enhanced diamond color center qubits can be initialized, manipulated, entangled, and read individually with high fidelity, which makes them ideal for large-scale, modular quantum computers, quantum networks, and distributed quantum sensing systems. However, diamond's unique material properties pose significant challenges in manufacturing nanophotonic devices, leading to fabrication-induced structural imperfections and inaccuracies in defect implantation, which hinder reproducibility, degrade optical properties and compromise the spatial coupling of color centers to small mode-volume cavities. A cavity design tolerant to fabrication imperfections, such as surface roughness, sidewall slant, and non-optimal emitter positioning, can improve coupling efficiency while simplifying fabrication. To address this challenge, a deep learning-based optimization methodology is developed to enhance the fabrication error tolerance of nanophotonic devices. Convolutional neural networks (CNNs) are applied to promising designs, such as L2 and fishbone nanobeam cavities, predicting Q-factors up to one million times faster than traditional finite-difference time-domain (FDTD) simulations, enabling efficient optimization of complex, high-dimensional parameter spaces. The CNNs achieve prediction errors below 3.99% and correlation coefficients up to 0.988. Optimized structures demonstrate a 52% reduction in Q-factor degradation, achieving quality factors of 5e4 under real-world conditions and a two-fold expansion in field distribution, enabling efficient coupling of non-optimally positioned emitters. This methodology enables scalable, high-yield manufacturing of robust nanophotonic devices, including the cavity-enhanced diamond quantum systems developed in this study.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com