Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Networks with Finite VC Dimension: Pro and Contra (2502.02679v1)

Published 4 Feb 2025 in stat.ML and cs.LG

Abstract: Approximation and learning of classifiers of large data sets by neural networks in terms of high-dimensional geometry and statistical learning theory are investigated. The influence of the VC dimension of sets of input-output functions of networks on approximation capabilities is compared with its influence on consistency in learning from samples of data. It is shown that, whereas finite VC dimension is desirable for uniform convergence of empirical errors, it may not be desirable for approximation of functions drawn from a probability distribution modeling the likelihood that they occur in a given type of application. Based on the concentration-of-measure properties of high dimensional geometry, it is proven that both errors in approximation and empirical errors behave almost deterministically for networks implementing sets of input-output functions with finite VC dimensions in processing large data sets. Practical limitations of the universal approximation property, the trade-offs between the accuracy of approximation and consistency in learning from data, and the influence of depth of networks with ReLU units on their accuracy and consistency are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.