Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

SEAL: Speech Embedding Alignment Learning for Speech Large Language Model with Retrieval-Augmented Generation (2502.02603v1)

Published 26 Jan 2025 in eess.AS, cs.CL, and cs.SD

Abstract: Embedding-based retrieval models have made significant strides in retrieval-augmented generation (RAG) techniques for text and multimodal LLMs applications. However, when it comes to speech larage LLMs (SLLMs), these methods are limited to a two-stage process, where automatic speech recognition (ASR) is combined with text-based retrieval. This sequential architecture suffers from high latency and error propagation. To address these limitations, we propose a unified embedding framework that eliminates the need for intermediate text representations. Specifically, the framework includes separate speech and text encoders, followed by a shared scaling layer that maps both modalities into a common embedding space. Our model reduces pipeline latency by 50\% while achieving higher retrieval accuracy compared to traditional two-stage methods. We also provide a theoretical analysis of the challenges inherent in end-to-end speech retrieval and introduce architectural principles for effective speech-to-document matching. Extensive experiments demonstrate the robustness of our approach across diverse acoustic conditions and speaker variations, paving the way for a new paradigm in multimodal SLLMs retrieval systems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.