Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MINT: Mitigating Hallucinations in Large Vision-Language Models via Token Reduction (2502.00717v1)

Published 2 Feb 2025 in cs.CV

Abstract: Hallucination has been a long-standing and inevitable problem that hinders the application of Large Vision-LLMs (LVLMs) in domains that require high reliability. Various methods focus on improvement depending on data annotations or training strategies, yet place less emphasis on LLM's inherent problems. To fill this gap, we delve into the attention mechanism of the decoding process in the LVLM. Intriguingly, our investigation uncovers the prevalent attention redundancy within the hierarchical architecture of the LVLM, manifesting as overextended image processing in deep layers and an overabundance of non-essential image tokens. Stemming from the observation, we thus propose MINT, a novel training-free decoding strategy, MItigating hallucinations via tokeN reducTion. Specifically, we dynamically intensify the LVLM's local perception capability by masking its attention to irrelevant image tokens. In addition, we use contrastive decoding that pushes the model to focus more on those key image regions. Our full method aims to guide the model in concentrating more on key visual elements during generation. Extensive experimental results on several popular public benchmarks show that our approach achieves a 4% improvement in mitigating hallucinations caused by distracted perception compared to original models. Meanwhile, our approach is demonstrated to make the model perceive 5% more visual points even though we reduce a suite of image tokens.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com