Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Position: Contextual Integrity is Inadequately Applied to Language Models (2501.19173v2)

Published 31 Jan 2025 in cs.CY

Abstract: Machine learning community is discovering Contextual Integrity (CI) as a useful framework to assess the privacy implications of LLMs. This is an encouraging development. The CI theory emphasizes sharing information in accordance with privacy norms and can bridge the social, legal, political, and technical aspects essential for evaluating privacy in LLMs. However, this is also a good point to reflect on use of CI for LLMs. This position paper argues that existing literature inadequately applies CI for LLMs without embracing the theory's fundamental tenets. Inadequate applications of CI could lead to incorrect conclusions and flawed privacy-preserving designs. We clarify the four fundamental tenets of CI theory, systematize prior work on whether they deviate from these tenets, and highlight overlooked issues in experimental hygiene for LLMs (e.g., prompt sensitivity, positional bias).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.