Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Strong and Controllable 3D Motion Generation (2501.18726v1)

Published 30 Jan 2025 in cs.CV

Abstract: Human motion generation is a significant pursuit in generative computer vision with widespread applications in film-making, video games, AR/VR, and human-robot interaction. Current methods mainly utilize either diffusion-based generative models or autoregressive models for text-to-motion generation. However, they face two significant challenges: (1) The generation process is time-consuming, posing a major obstacle for real-time applications such as gaming, robot manipulation, and other online settings. (2) These methods typically learn a relative motion representation guided by text, making it difficult to generate motion sequences with precise joint-level control. These challenges significantly hinder progress and limit the real-world application of human motion generation techniques. To address this gap, we propose a simple yet effective architecture consisting of two key components. Firstly, we aim to improve hardware efficiency and computational complexity in transformer-based diffusion models for human motion generation. By customizing flash linear attention, we can optimize these models specifically for generating human motion efficiently. Furthermore, we will customize the consistency model in the motion latent space to further accelerate motion generation. Secondly, we introduce Motion ControlNet, which enables more precise joint-level control of human motion compared to previous text-to-motion generation methods. These contributions represent a significant advancement for text-to-motion generation, bringing it closer to real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com