Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

3DSES: an indoor Lidar point cloud segmentation dataset with real and pseudo-labels from a 3D model (2501.17534v1)

Published 29 Jan 2025 in cs.CV

Abstract: Semantic segmentation of indoor point clouds has found various applications in the creation of digital twins for robotics, navigation and building information modeling (BIM). However, most existing datasets of labeled indoor point clouds have been acquired by photogrammetry. In contrast, Terrestrial Laser Scanning (TLS) can acquire dense sub-centimeter point clouds and has become the standard for surveyors. We present 3DSES (3D Segmentation of ESGT point clouds), a new dataset of indoor dense TLS colorized point clouds covering 427 m 2 of an engineering school. 3DSES has a unique double annotation format: semantic labels annotated at the point level alongside a full 3D CAD model of the building. We introduce a model-to-cloud algorithm for automated labeling of indoor point clouds using an existing 3D CAD model. 3DSES has 3 variants of various semantic and geometrical complexities. We show that our model-to-cloud alignment can produce pseudo-labels on our point clouds with a > 95% accuracy, allowing us to train deep models with significant time savings compared to manual labeling. First baselines on 3DSES show the difficulties encountered by existing models when segmenting objects relevant to BIM, such as light and safety utilities. We show that segmentation accuracy can be improved by leveraging pseudo-labels and Lidar intensity, an information rarely considered in current datasets. Code and data will be open sourced.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube