Token-by-Token Regeneration and Domain Biases: A Benchmark of LLMs on Advanced Mathematical Problem-Solving (2501.17084v1)
Abstract: LLMs excel in many natural language tasks, yet they struggle with complex mathemat-ical problem-solving, particularly in symbolic reasoning and maintaining consistent output. This study evalu-ates 10 LLMs with 7 to 8 billion parameters using 945 competition-level problems from the MATH dataset. The focus is on their ability to generate executable Python code as a step in their reasoning process, involving over 9,450 code executions. The research introduces an evaluation framework using mistral-large-2411 to rate answers on a 5-point scale, which helps address inconsistencies in mathematical notation. It also examines the impact of regenerating output token-by-token on refining results. The findings reveal a significant 34.5% per-formance gap between the top commercial model (gpt-4o-mini, scoring 83.7%) and the least effective open-source model (open-codestral-mamba:v0.1, scoring 49.2%). This disparity is especially noticeable in complex areas like Number Theory. While token-by-token regeneration slightly improved accuracy (+0.8%) for the model llama3.1:8b, it also reduced code execution time by 36.7%, highlighting a trade-off between efficiency and precision. The study also noted a consistent trend where harder problems correlated with lower accuracy across all models. Despite using controlled execution environments, less than 1% of the generated code was unsafe, and 3.17% of problems remained unsolved after 10 attempts, suggesting that hybrid reasoning methods may be beneficial.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.