Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UniPET-SPK: A Unified Framework for Parameter-Efficient Tuning of Pre-trained Speech Models for Robust Speaker Verification (2501.16542v1)

Published 27 Jan 2025 in eess.AS, cs.LG, and cs.SD

Abstract: With excellent generalization ability, SSL speech models have shown impressive performance on various downstream tasks in the pre-training and fine-tuning paradigm. However, as the size of pre-trained models grows, fine-tuning becomes practically unfeasible due to expanding computation and storage requirements and the risk of overfitting. This study explores parameter-efficient tuning (PET) methods for adapting large-scale pre-trained SSL speech models to speaker verification task. Correspondingly, we propose three PET methods: (i)an adapter-tuning method, (ii)a prompt-tuning method, and (iii)a unified framework that effectively incorporates adapter-tuning and prompt-tuning with a dynamically learnable gating mechanism. First, we propose the Inner+Inter Adapter framework, which inserts two types of adapters into pre-trained models, allowing for adaptation of latent features within the intermediate Transformer layers and output embeddings from all Transformer layers, through a parallel adapter design. Second, we propose the Deep Speaker Prompting method that concatenates trainable prompt tokens into the input space of pre-trained models to guide adaptation. Lastly, we propose the UniPET-SPK, a unified framework that effectively incorporates these two alternate PET methods into a single framework with a dynamic trainable gating mechanism. The proposed UniPET-SPK learns to find the optimal mixture of PET methods to match different datasets and scenarios. We conduct a comprehensive set of experiments on several datasets to validate the effectiveness of the proposed PET methods. Experimental results on VoxCeleb, CN-Celeb, and 1st 48-UTD forensic datasets demonstrate that the proposed UniPET-SPK consistently outperforms the two PET methods, fine-tuning, and other parameter-efficient tuning methods, achieving superior performance while updating only 5.4% of the parameters.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube