Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating the Effectiveness of XAI Techniques for Encoder-Based Language Models (2501.15374v1)

Published 26 Jan 2025 in cs.CL, cs.AI, cs.CY, and cs.LG

Abstract: The black-box nature of LLMs necessitates the development of eXplainable AI (XAI) techniques for transparency and trustworthiness. However, evaluating these techniques remains a challenge. This study presents a general evaluation framework using four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. We assess the effectiveness of six explainability techniques from five different XAI categories model simplification (LIME), perturbation-based methods (SHAP), gradient-based approaches (InputXGradient, Grad-CAM), Layer-wise Relevance Propagation (LRP), and attention mechanisms-based explainability methods (Attention Mechanism Visualization, AMV) across five encoder-based LLMs: TinyBERT, BERTbase, BERTlarge, XLM-R large, and DeBERTa-xlarge, using the IMDB Movie Reviews and Tweet Sentiment Extraction (TSE) datasets. Our findings show that the model simplification-based XAI method (LIME) consistently outperforms across multiple metrics and models, significantly excelling in HA with a score of 0.9685 on DeBERTa-xlarge, robustness, and consistency as the complexity of LLMs increases. AMV demonstrates the best Robustness, with scores as low as 0.0020. It also excels in Consistency, achieving near-perfect scores of 0.9999 across all models. Regarding Contrastivity, LRP performs the best, particularly on more complex models, with scores up to 0.9371.

Summary

We haven't generated a summary for this paper yet.