Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Generalized Orthogonal de Bruijn and Kautz Sequences (2501.12921v2)

Published 22 Jan 2025 in cs.IT, math.CO, and math.IT

Abstract: A de Bruijn sequence of order $k$ over a finite alphabet is a cyclic sequence with the property that it contains every possible $k$-sequence as a substring exactly once. Orthogonal de Bruijn sequences are collections of de Bruijn sequences of the same order, $k$, satisfying the joint constraint that every $(k+1)$-sequence appears as a substring in at most one of the sequences in the collection. Both de Bruijn and orthogonal de Bruijn sequences have found numerous applications in synthetic biology, although the latter remain largely unexplored in the coding theory literature. Here we study three relevant practical generalizations of orthogonal de Bruijn sequences where we relax either the constraint that every $(k+1)$-sequence appears exactly once, or that the sequences themselves are de Bruijn rather than balanced de Bruijn sequences. We also provide lower and upper bounds on the number of fixed-weight orthogonal de Bruijn sequences. The paper concludes with parallel results for orthogonal nonbinary Kautz sequences, which satisfy similar constraints as de Bruijn sequences except for only being required to cover all subsequences of length $k$ whose maximum runlength equals to one.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube