Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

An Optimal Transport approach to arbitrage correction: Application to volatility Stress-Tests (2501.12195v1)

Published 21 Jan 2025 in q-fin.MF

Abstract: We present a method based on optimal transport to remove arbitrage opportunities within a finite set of option prices. The method is notably intended for regulatory stress-tests, which impose to apply important local distortions to implied volatility surfaces. The resulting stressed option prices are naturally associated to a family of signed marginal measures: we formulate the process of removing arbitrage as a projection onto the subset of martingale measures with respect to a Wasserstein metric in the space of signed measures. We show how this projection problem can be recast as an optimal transport problem; in view of the numerical solution, we apply an entropic regularization technique. For the regularized problem, we derive a strong duality formula, show convergence results as the regularization parameter approaches zero, and formulate a multi-constrained Sinkhorn algorithm, where each iteration involves, at worse, finding the root of an explicit scalar function. The convergence of this algorithm is also established. We compare our method with the existing approach by [Cohen, Reisinger and Wang, Appl.\ Math.\ Fin.\ 2020] across various scenarios and test cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com