Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diffusion-Based Imitation Learning for Social Pose Generation (2501.10869v1)

Published 18 Jan 2025 in cs.LG and cs.RO

Abstract: Intelligent agents, such as robots and virtual agents, must understand the dynamics of complex social interactions to interact with humans. Effectively representing social dynamics is challenging because we require multi-modal, synchronized observations to understand a scene. We explore how using a single modality, the pose behavior, of multiple individuals in a social interaction can be used to generate nonverbal social cues for the facilitator of that interaction. The facilitator acts to make a social interaction proceed smoothly and is an essential role for intelligent agents to replicate in human-robot interactions. In this paper, we adapt an existing diffusion behavior cloning model to learn and replicate facilitator behaviors. Furthermore, we evaluate two representations of pose observations from a scene, one representation has pre-processing applied and one does not. The purpose of this paper is to introduce a new use for diffusion behavior cloning for pose generation in social interactions. The second is to understand the relationship between performance and computational load for generating social pose behavior using two different techniques for collecting scene observations. As such, we are essentially testing the effectiveness of two different types of conditioning for a diffusion model. We then evaluate the resulting generated behavior from each technique using quantitative measures such as mean per-joint position error (MPJPE), training time, and inference time. Additionally, we plot training and inference time against MPJPE to examine the trade-offs between efficiency and performance. Our results suggest that the further pre-processed data can successfully condition diffusion models to generate realistic social behavior, with reasonable trade-offs in accuracy and processing time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.