Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Amortized Bayesian Mixture Models (2501.10229v2)

Published 17 Jan 2025 in stat.ML, cs.LG, and stat.CO

Abstract: Finite mixtures are a broad class of models useful in scenarios where observed data is generated by multiple distinct processes but without explicit information about the responsible process for each data point. Estimating Bayesian mixture models is computationally challenging due to issues such as high-dimensional posterior inference and label switching. Furthermore, traditional methods such as MCMC are applicable only if the likelihoods for each mixture component are analytically tractable. Amortized Bayesian Inference (ABI) is a simulation-based framework for estimating Bayesian models using generative neural networks. This allows the fitting of models without explicit likelihoods, and provides fast inference. ABI is therefore an attractive framework for estimating mixture models. This paper introduces a novel extension of ABI tailored to mixture models. We factorize the posterior into a distribution of the parameters and a distribution of (categorical) mixture indicators, which allows us to use a combination of generative neural networks for parameter inference, and classification networks for mixture membership identification. The proposed framework accommodates both independent and dependent mixture models, enabling filtering and smoothing. We validate and demonstrate our approach through synthetic and real-world datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube