Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians (2501.09009v2)

Published 15 Jan 2025 in physics.chem-ph, cond-mat.mtrl-sci, cs.LG, and physics.bio-ph

Abstract: The foundation model (FM) paradigm is transforming Machine Learning Force Fields (MLFFs), leveraging general-purpose representations and scalable training to perform a variety of computational chemistry tasks. Although MLFF FMs have begun to close the accuracy gap relative to first-principles methods, there is still a strong need for faster inference speed. Additionally, while research is increasingly focused on general-purpose models which transfer across chemical space, practitioners typically only study a small subset of systems at a given time. This underscores the need for fast, specialized MLFFs relevant to specific downstream applications, which preserve test-time physical soundness while maintaining train-time scalability. In this work, we introduce a method for transferring general-purpose representations from MLFF foundation models to smaller, faster MLFFs specialized to specific regions of chemical space. We formulate our approach as a knowledge distillation procedure, where the smaller "student" MLFF is trained to match the Hessians of the energy predictions of the "teacher" foundation model. Our specialized MLFFs can be up to 20 $\times$ faster than the original foundation model, while retaining, and in some cases exceeding, its performance and that of undistilled models. We also show that distilling from a teacher model with a direct force parameterization into a student model trained with conservative forces (i.e., computed as derivatives of the potential energy) successfully leverages the representations from the large-scale teacher for improved accuracy, while maintaining energy conservation during test-time molecular dynamics simulations. More broadly, our work suggests a new paradigm for MLFF development, in which foundation models are released along with smaller, specialized simulation "engines" for common chemical subsets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com