Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Detecting Wildfire Flame and Smoke through Edge Computing using Transfer Learning Enhanced Deep Learning Models (2501.08639v1)

Published 15 Jan 2025 in cs.CV and eess.IV

Abstract: Autonomous unmanned aerial vehicles (UAVs) integrated with edge computing capabilities empower real-time data processing directly on the device, dramatically reducing latency in critical scenarios such as wildfire detection. This study underscores Transfer Learning's (TL) significance in boosting the performance of object detectors for identifying wildfire smoke and flames, especially when trained on limited datasets, and investigates the impact TL has on edge computing metrics. With the latter focusing how TL-enhanced You Only Look Once (YOLO) models perform in terms of inference time, power usage, and energy consumption when using edge computing devices. This study utilizes the Aerial Fire and Smoke Essential (AFSE) dataset as the target, with the Flame and Smoke Detection Dataset (FASDD) and the Microsoft Common Objects in Context (COCO) dataset serving as source datasets. We explore a two-stage cascaded TL method, utilizing D-Fire or FASDD as initial stage target datasets and AFSE as the subsequent stage. Through fine-tuning, TL significantly enhances detection precision, achieving up to 79.2% mean Average Precision ([email protected]), reduces training time, and increases model generalizability across the AFSE dataset. However, cascaded TL yielded no notable improvements and TL alone did not benefit the edge computing metrics evaluated. Lastly, this work found that YOLOv5n remains a powerful model when lacking hardware acceleration, finding that YOLOv5n can process images nearly twice as fast as its newer counterpart, YOLO11n. Overall, the results affirm TL's role in augmenting the accuracy of object detectors while also illustrating that additional enhancements are needed to improve edge computing performance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.