Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Exploring the distribution of connectivity weights in resting-state EEG networks (2501.07394v2)

Published 13 Jan 2025 in cs.HC

Abstract: The resting-state brain networks (RSNs) reflects the functional connectivity patterns between brain modules, providing essential foundations for decoding intrinsic neural information within the brain. It serves as one of the primary tools for describing the spatial dynamics of the brain using various neuroimaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG). However, the distribution rules or potential modes of functional connectivity weights in the resting state remain unclear. In this context, we first start from simulation, using forward solving model to generate scalp EEG with four channel densities (19, 32, 64, 128). Subsequently, we construct scalp brain networks using five coupling measures, aiming to explore whether different channel density or coupling measures affect the distribution pattern of functional connectivity weights. Next, we quantify the distribution pattern by calculating the skewness, kurtosis, and Shannon entropy of the functional connectivity network weights. Finally, the results of the simulation were validated in a normative database. We observed that: 1) The functional connection weights exhibit a right-skewed distribution, and are not influenced by channel density or coupling measures; 2) The functional connection weights exhibit a relatively uniform distribution, with the potential for volume conduction to affect the degree of uniformity in the distribution; 3) Networks constructed using coupling measures influenced by volume conduction exhibit significant correlations between the average connection weight and measures of skewness, kurtosis, and Shannon entropy. This study contributes to a deeper understanding of RSNs, providing valuable insights for research in the field of neuroscience, and holds promise for being associated with brain cognition and disease diagnosis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.