Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Emergent effects of scaling on the functional hierarchies within large language models (2501.07359v1)

Published 13 Jan 2025 in cs.CL and cs.AI

Abstract: LLM architectures are often described as functionally hierarchical: Early layers process syntax, middle layers begin to parse semantics, and late layers integrate information. The present work revisits these ideas. This research submits simple texts to an LLM (e.g., "A church and organ") and extracts the resulting activations. Then, for each layer, support vector machines and ridge regressions are fit to predict a text's label and thus examine whether a given layer encodes some information. Analyses using a small model (Llama-3.2-3b; 28 layers) partly bolster the common hierarchical perspective: Item-level semantics are most strongly represented early (layers 2-7), then two-item relations (layers 8-12), and then four-item analogies (layers 10-15). Afterward, the representation of items and simple relations gradually decreases in deeper layers that focus on more global information. However, several findings run counter to a steady hierarchy view: First, although deep layers can represent document-wide abstractions, deep layers also compress information from early portions of the context window without meaningful abstraction. Second, when examining a larger model (Llama-3.3-70b-Instruct), stark fluctuations in abstraction level appear: As depth increases, two-item relations and four-item analogies initially increase in their representation, then markedly decrease, and afterward increase again momentarily. This peculiar pattern consistently emerges across several experiments. Third, another emergent effect of scaling is coordination between the attention mechanisms of adjacent layers. Across multiple experiments using the larger model, adjacent layers fluctuate between what information they each specialize in representing. In sum, an abstraction hierarchy often manifests across layers, but large models also deviate from this structure in curious ways.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)