Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Generative Clustering with VAEs and Expectation-Maximization (2501.07358v1)

Published 13 Jan 2025 in cs.LG and stat.ML

Abstract: We propose a novel deep clustering method that integrates Variational Autoencoders (VAEs) into the Expectation-Maximization (EM) framework. Our approach models the probability distribution of each cluster with a VAE and alternates between updating model parameters by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood and refining cluster assignments based on the learned distributions. This enables effective clustering and generation of new samples from each cluster. Unlike existing VAE-based methods, our approach eliminates the need for a Gaussian Mixture Model (GMM) prior or additional regularization techniques. Experiments on MNIST and FashionMNIST demonstrate superior clustering performance compared to state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Adipoetra (1 paper)
  2. Ségolène Martin (9 papers)

Summary

We haven't generated a summary for this paper yet.