Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lusin approximation for functions of bounded variation (2501.07147v1)

Published 13 Jan 2025 in math.FA

Abstract: We prove a Lusin approximation of functions of bounded variation. If $f$ is a function of bounded variation on an open set $\Omega\subset X$, where $X=(X,d,\mu)$ is a given complete doubling metric measure space supporting a $1$-Poincar\'e inequality, then for every $\varepsilon>0$, there exist a function $f_\varepsilon$ on $\Omega$ and an open set $U_\varepsilon\subset\Omega$ such that the following properties hold true: \begin{enumerate} \item ${\rm Cap}1(U\varepsilon)<\varepsilon$; \item $|f-f_\varepsilon|{\BV(\Omega)}< \varepsilon$; \item $f\vee\equiv f\varepsilon\vee$ and $f\wedge\equiv f_\varepsilon\wedge$ on $\Omega\setminus U_\varepsilon$; \item $f_\varepsilon\vee$ is upper semicontinuous on $\Omega$, and $f_\varepsilon\wedge$ is lower semicontinuous on $\Omega$. \end{enumerate} If the space $X$ is unbounded, then such an approximating function $f_\varepsilon$ can be constructed with the additional property that the uniform limit at infinity of both $f\vee_\varepsilon$ and $f\wedge_\varepsilon$ is $0$. Moreover, when $X=\Rd$, we show that the non-centered maximal function of $f_\varepsilon$ is continuous in $\Omega$.

Summary

We haven't generated a summary for this paper yet.