Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

($P_2+P_4$, $K_4-e$)-free graphs are nearly $ω$-colorable (2501.02543v2)

Published 5 Jan 2025 in math.CO and cs.DM

Abstract: For a graph $G$, $\chi(G)$ and $\omega(G)$ respectively denote the chromatic number and clique number of $G$. In this paper, we show that if $G$ is a ($P_2+P_4$, $K_4-e$)-free graph with $\omega(G)\geq 3$, then $\chi(G)\leq \max{6, \omega(G)}$, and that the bound is tight for each $\omega(G)\notin {4,5}$. This extends the results known for the class of ($P_2+P_3$, $K_4-e$)-free graphs, improves the bound of Chen and Zhang [arXiv:2412.14524[math.CO], 2024] given for the class of ($P_2+P_4$, $K_4-e$)-free graphs, partially answers a question of Ju and the third author [Theor. Comp. Sci. 993 (2024) Article No.: 114465] on `near optimal colorable graphs', and partially answers a question of Schiermeyer (unpublished) on the chromatic bound for ($P_7$, $K_4-e$)-free graphs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com