Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coloring of ($P_5$, $4$-wheel)-free graphs (2004.01365v5)

Published 3 Apr 2020 in math.CO and cs.DM

Abstract: For a graph $G$, $\chi(G)$ $(\omega(G))$ denote its chromatic (clique) number. A $P_5$ is the chordless path on five vertices, and a $4$-$wheel$ is the graph consisting of a chordless cycle on four vertices $C_4$ plus an additional vertex adjacent to all the vertices of the $C_4$. In this paper, we show that every ($P_5$, $4$-wheel)-free graph $G$ satisfies $\chi(G)\leq \frac{3}{2}\omega(G)$. Moreover, this bound is almost tight. That is, there is a class of ($P_5$, $4$-wheel)-free graphs $\cal L$ such that every graph $H\in \cal L$ satisfies $\chi(H)\geq\frac{10}{7}\omega(H)$. This generalizes/improves several previously known results in the literature.

Citations (11)

Summary

We haven't generated a summary for this paper yet.