Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Comparative Study of Deep Learning Architectures for Textual Damage Level Classification (2501.01694v1)

Published 3 Jan 2025 in cs.LG

Abstract: Given the paramount importance of safety in the aviation industry, even minor operational anomalies can have significant consequences. Comprehensive documentation of incidents and accidents serves to identify root causes and propose safety measures. However, the unstructured nature of incident event narratives poses a challenge for computer systems to interpret. Our study aimed to leverage NLP and deep learning models to analyze these narratives and classify the aircraft damage level incurred during safety occurrences. Through the implementation of LSTM, BLSTM, GRU, and sRNN deep learning models, our research yielded promising results, with all models showcasing competitive performance, achieving an accuracy of over 88% significantly surpassing the 25% random guess threshold for a four-class classification problem. Notably, the sRNN model emerged as the top performer in terms of recall and accuracy, boasting a remarkable 89%. These findings underscore the potential of NLP and deep learning models in extracting actionable insights from unstructured text narratives, particularly in evaluating the extent of aircraft damage within the realm of aviation safety occurrences.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets