Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Bivariate Truncated Moment Sequences with the Column Relation $XY=X^m + q(X)$, with $q$ of degree $m-1$ (2412.21020v1)

Published 30 Dec 2024 in math.FA

Abstract: When the algebraic variety associated with a truncated moment sequence is finite, solving the moment problem follows a well-defined procedure. However, moment problems involving infinite algebraic varieties are more complex and less well-understood. Recent studies suggest that certain bivariate moment sequences can be transformed into equivalent univariate sequences, offering a valuable approach for solving these problems. In this paper, we focus on addressing the truncated moment problem (TMP) for specific rational plane curves. For a curve of general degree we derive an equivalent Hankel positive semidefinite completion problem. For cubic curves, we solve this problem explicitly, which resolves the TMP for one of the four types of cubic curves, up to affine linear equivalence. For the quartic case we simplify the completion problem to a feasibility question of a three-variable system of inequalities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com