Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to Rank Pre-trained Vision-Language Models for Downstream Tasks (2412.20682v1)

Published 30 Dec 2024 in cs.CV and cs.LG

Abstract: Vision LLMs (VLMs) like CLIP show stellar zero-shot capability on classification benchmarks. However, selecting the VLM with the highest performance on the unlabeled downstream task is non-trivial. Existing VLM selection methods focus on the class-name-only setting, relying on a supervised large-scale dataset and LLMs, which may not be accessible or feasible during deployment. This paper introduces the problem of \textbf{unsupervised vision-LLM selection}, where only unsupervised downstream datasets are available, with no additional information provided. To solve this problem, we propose a method termed Visual-tExtual Graph Alignment (VEGA), to select VLMs without any annotations by measuring the alignment of the VLM between the two modalities on the downstream task. VEGA is motivated by the pretraining paradigm of VLMs, which aligns features with the same semantics from the visual and textual modalities, thereby mapping both modalities into a shared representation space. Specifically, we first construct two graphs on the vision and textual features, respectively. VEGA is then defined as the overall similarity between the visual and textual graphs at both node and edge levels. Extensive experiments across three different benchmarks, covering a variety of application scenarios and downstream datasets, demonstrate that VEGA consistently provides reliable and accurate estimates of VLMs' performance on unlabeled downstream tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.