Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Matrix Concentration for Random Signed Graphs and Community Recovery in the Signed Stochastic Block Model (2412.20620v1)

Published 29 Dec 2024 in stat.ML, cs.LG, and cs.SI

Abstract: We consider graphs where edges and their signs are added independently at random from among all pairs of nodes. We establish strong concentration inequalities for adjacency and Laplacian matrices obtained from this family of random graph models. Then, we apply our results to study graphs sampled from the signed stochastic block model. Namely, we take a two-community setting where edges within the communities have positive signs and edges between the communities have negative signs and apply a random sign perturbation with probability $0< s <1/2$. In this setting, our findings include: first, the spectral gap of the corresponding signed Laplacian matrix concentrates near $2s$ with high probability; and second, the sign of the first eigenvector of the Laplacian matrix defines a weakly consistent estimator for the balanced community detection problem, or equivalently, the $\pm 1$ synchronization problem. We supplement our theoretical contributions with experimental data obtained from the models under consideration.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube