Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local Characteristic Decomposition of Equilibrium Variables for Hyperbolic Systems of Balance Laws (2412.19791v1)

Published 27 Dec 2024 in math.NA and cs.NA

Abstract: This paper is concerned with high-order numerical methods for hyperbolic systems of balance laws. Such methods are typically based on high-order piecewise polynomial reconstructions (interpolations) of the computed discrete quantities. However, such reconstructions (interpolations) may be oscillatory unless the reconstruction (interpolation) procedure is applied to the local characteristic variables via the local characteristic decomposition (LCD). Another challenge in designing accurate and stable high-order schemes is related to enforcing a delicate balance between the fluxes, sources, and nonconservative product terms: a good scheme should be well-balanced (WB) in the sense that it should be capable of exactly preserving certain (physically relevant) steady states. One of the ways to ensure that the reconstruction (interpolation) preserves these steady states is to apply the reconstruction (interpolation) to the equilibrium variables, which are supposed to be constant at the steady states. To achieve this goal and to keep the reconstruction (interpolation) non-oscillatory, we introduce a new LCD of equilibrium variables. We apply the developed technique to the fifth-order Ai-WENO-Z interpolation implemented within the WB A-WENO framework recently introduced in [S. Chu, A. Kurganov, and R. Xin, Beijing J. of Pure and Appl. Math., to appear], and illustrate its performance on a variety of numerical examples.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube