Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RAG with Differential Privacy (2412.19291v2)

Published 26 Dec 2024 in cs.LG, cs.AI, and cs.CR

Abstract: Retrieval-Augmented Generation (RAG) has emerged as the dominant technique to provide \emph{LLMs} (LLM) with fresh and relevant context, mitigating the risk of hallucinations and improving the overall quality of responses in environments with large and fast moving knowledge bases. However, the integration of external documents into the generation process raises significant privacy concerns. Indeed, when added to a prompt, it is not possible to guarantee a response will not inadvertently expose confidential data, leading to potential breaches of privacy and ethical dilemmas. This paper explores a practical solution to this problem suitable to general knowledge extraction from personal data. It shows \emph{differentially private token generation} is a viable approach to private RAG.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

HackerNews

  1. RAG with Differential Privacy (2 points, 0 comments)