Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Empirical likelihood for Fréchet means on open books (2412.18818v1)

Published 25 Dec 2024 in math.ST, stat.CO, stat.ME, and stat.TH

Abstract: Empirical Likelihood (EL) is a type of nonparametric likelihood that is useful in many statistical inference problems, including confidence region construction and $k$-sample problems. It enjoys some remarkable theoretical properties, notably Bartlett correctability. One area where EL has potential but is under-developed is in non-Euclidean statistics where the Fr\'echet mean is the population characteristic of interest. Only recently has a general EL method been proposed for smooth manifolds. In this work, we continue progress in this direction and develop an EL method for the Fr\'echet mean on a stratified metric space that is not a manifold: the open book, obtained by gluing copies of a Euclidean space along their common boundaries. The structure of an open book captures the essential behaviour of the Fr\'echet mean around certain singular regions of more general stratified spaces for complex data objects, and relates intimately to the local geometry of non-binary trees in the well-studied phylogenetic treespace. We derive a version of Wilks' theorem for the EL statistic, and elucidate on the delicate interplay between the asymptotic distribution and topology of the neighbourhood around the population Fr\'echet mean. We then present a bootstrap calibration of the EL, which proves that under mild conditions, bootstrap calibration of EL confidence regions have coverage error of size $O(n{-2})$ rather than $O(n{-1})$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.