Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A chain-level model for Chas-Sullivan products in Morse homology with differential graded coefficients (2412.18264v1)

Published 24 Dec 2024 in math.AT and math.GT

Abstract: We use the framework of Morse theory with differential graded coefficients to study certain operations on the total space of a fibration. More particularly, we focus in this paper on a chain-level description of the Chas-Sullivan product on the homology of the free loop space of an oriented, closed and connected manifold. The idea of ''intersecting on the base'' and ''concatenating on the fiber'' are well-adapted to this framework. We also give a Morse theoretical description of other products that follow the same principle. For this purpose, we develop functorial properties with respect to the coefficient in terms of morphisms of A $\infty$ -modules and morphisms of fibrations. We also build a differential graded version of the K{\"u}nneth formula and of the Pontryagin-Thom construction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube