Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Traveling-wave solutions and structure-preserving numerical methods for a hyperbolic approximation of the Korteweg-de Vries equation (2412.17117v1)

Published 22 Dec 2024 in math.NA and cs.NA

Abstract: We study the recently-proposed hyperbolic approximation of the Korteweg-de Vries equation (KdV). We show that this approximation, which we call KdVH, possesses a rich variety of solutions, including solitary wave solutions that approximate KdV solitons, as well as other solitary and periodic solutions that are related to higher-order water wave models, and may include singularities. We analyze a class of implicit-explicit Runge-Kutta time discretizations for KdVH that are asymptotic preserving, energy conserving, and can be applied to other hyperbolized systems. We also develop structure-preserving spatial discretizations based on summation-by-parts operators in space including finite difference, discontinuous Galerkin, and Fourier methods. We use the relaxation approach to make the fully discrete schemes energy-preserving. Numerical experiments demonstrate the effectiveness of these discretizations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com