Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations (2104.05523v1)

Published 12 Apr 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: In this paper, we propose a class of adaptive multiresolution (also called adaptive sparse grid) ultra-weak discontinuous Galerkin (UWDG) methods for solving some nonlinear dispersive wave equations including the Korteweg-de Vries (KdV) equation and its two dimensional generalization, the Zakharov-Kuznetsov (ZK) equation. The UWDG formulation, which relies on repeated integration by parts, was proposed for KdV equation in \cite{cheng2008discontinuous}. For the ZK equation which contains mixed derivative terms, we develop a new UWDG formulation. The $L2$ stability and the optimal error estimate with a novel local projection are established for this new scheme on regular meshes. Adaptivity is achieved based on multiresolution and is particularly effective for capturing solitary wave structures. Various numerical examples are presented to demonstrate the accuracy and capability of our methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.